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Abstract

Background: Currently very few noninvasive molecular genetic approaches are available to determine zygosity for twin
pregnancies in clinical laboratories. This study aimed to develop a novel method to determine zygosity by using maternal
plasma target region sequencing.

Methods: We constructed a statistic model to calculate the possibility of each zygosity type using likelihood ratios (Li) and
empirical dynamic thresholds targeting at 4,524 single nucleotide polymorphisms (SNPs) loci on 22 autosomes. Then two
dizygotic (DZ) twin pregnancies,two monozygotic (MZ) twin pregnancies and two singletons were recruited to evaluate the
performance of our novel method. Finally we estimated the sensitivity and specificity of the model in silico under different
cell-free fetal DNA (cff-DNA) concentration and sequence depth.

Results/Conclusions: We obtained 8.90 Gbp sequencing data on average for six clinical samples. Two samples were
classified as DZ with L values of 1.891 and 1.554, higher than the dynamic DZ cut-off values of 1.162 and 1.172, respectively.
Another two samples were judged as MZ with 0.763 and 0.784 of L values, lower than the MZ cut-off values of 0.903 and
0.918. And the rest two singleton samples were regarded as MZ twins, with L values of 0.639 and 0.757, lower than the MZ
cut-off values of 0.921 and 0.799. In silico, the estimated sensitivity of our noninvasive zygosity determination was 99.90%
under 10% total cff-DNA concentration with 2 Gbp sequence data. As the cff-DNA concentration increased to 15%, the
specificity was as high as 97% with 3.50 Gbp sequence data, much higher than 80% with 10% cff-DNA concentration.

Significance: This study presents the feasibility to noninvasively determine zygosity of twin pregnancy using target region
sequencing, and illustrates the sensitivity and specificity under various detecting condition. Our method can act as an
alternative approach for zygosity determination of twin pregnancies in clinical practice.
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Introduction

It was reported that fetal mortality rate at 20 weeks of gestation

or more was 6.22 deaths per 1,000 in United States, in which the

fetal mortality rate for twins was 2.7 times higher compared to

singletons [1]. The higher risk of twin pregnancies may due to

several reasons, for instance, twin–twin transfusion syndrome

(TTTS) [2]. There are more than 4,500 TTTS cases per year in

the U.S. [3]. Moreover, a significantly increasing risk has been

observed in monozygotic (MZ) twins in previous studies [4].

Therefore, zygosity is an important parameter in prenatal

diagnosis for twin pregnancies.

The diagnosis of zygosity for twin pregnancies relies on the

determination of chorionicity by ultrasound scanning within 14

gestational weeks, with 89.8% sensitivity and 99.5% specificity [5–
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7]. However, the accuracy of ultrasound detection declines

dramatically due to thinner chorionicity in the second trimester

[8]. Invasive approaches such as amniocentesis or cord blood

sampling combined with microsatellite DNA markers could also

detect zygosity with high accuracies, but it presents a potential

miscarriage at a risk of 0.5–1% [9]. Thus there is a huge demand

for a noninvasive method to accurately determine the zygosity type

without the limitation of gestational age. The discovery of cell-free

fetal DNA (cff-DNA) in maternal plasma opened a new direction

for noninvasive prenatal diagnosis [10]. Combined with the

rapidly developing massively parallel sequencing(MPS) technolo-

gy, Qu et al. recently observed the fluctuation of cff-DNA

concentration among autosomes between dizygotic (DZ) and

MZ twin pregnancies. The SD variation of the fluctuation from 8

samples was regarded as the indication to determine the zygosity

[11]. However, the method lacked evaluation of sensitivity and

specificity.

Herein, we developed a noninvasive method based on maternal

plasma target region sequencing to determine zygosity of twin

pregnancies. We successfully determined two DZ, MZ twin

pregnancies and two simulated MZ twin pregnancies through

our mathematical model and obtained satisfactory sensitivity and

specificity in silico. Our study provides a practical alternative

approach for zygosity determination in clinical practice.

Results

Bioinformatic Pipeline Establishment
In order to determine the zygosity, we employed a bioinformatic

method using a conditional probability model. We defined Li to

measure the zygosity tendency of each available paternal-only

heterozygous SNP locus (where maternal genotype was homozy-

gous), and L value which was the geometric mean of Li to

represent the global tendency. The zygosity could be determined if

its L value passed its corresponding cut-off.

In order to get the cut-offs, we generated simulated samples with

different gradients of cff-DNA concentration from 10.00% to

30.00% and sequence depth from 3006to 13006, and got a series

of real cut-offs (LR) with the boundaries of .95% confidence

interval (CI) (Table S1). Based on these scattered LR, we used

least squared method (LSM) to obtain two approximate mathe-

matical expressions of DZ and MZ dynamic cut-offs respectively

(Materials and Methods).

After getting the fitting expressions, we established a compre-

hensive pipeline, which included sequence reads alignment,

parental genotype detection, total cff-DNA concentration estima-

tion, calculation of L among clinical samples and zygosity

determination by comparing L to its corresponding dynamic

cut-off. Six clinical samples were recruited to assess the accuracy of

our methodology. Finally, we used more simulated samples to

depict the sensitivity and specificity of our methodology under

various detecting conditions in silico.

Clinical Samples and Data Productions
Four twin pregnancies named Sample1, 2, 5 and 6 were

enrolled from Women’s Hospital School of Medicine Zhejiang

University and Peking University Third Hospital, whose gesta-

tional ages were 20+2 and 19+4, 20 and 20+4 weeks, respectively.

We also enrolled two singletons named Sample3 and Sample4

with gestational age of 19 and 8 weeks from Women’s Hospital

School of Medicine Zhejiang University and BGI-Shenzhen.

Sample1 and Sample2 had already been diagnosed as DZ by

invasive procedure aminocyte karyotyping suggesting mixed-

gender twin pregnancies. Sample5 and Sample6 were diagnosed

as MZ by ultrasound scanning.

4.43 Gbp and 11.47 Gbp clean data were extracted from

maternal plasma Sample1 and Sample2, corresponding with

930.876 and 1363.256sequence depth. 95.81% and 97.51% of

target region was covered by at least one read. For maternal

plasma Sample3 and Sample4, 4.53 Gbp and 2.55 Gbp clean data

were extracted respectively. The sequence depth was 519.346and

446.896, and the corresponding coverage of target region was

95.36% and 96.88%. For Sample5 and Sample6, we obtained

16.26 Gbp and 15.59 Gbp clean data, corresponding to 492.36
and 271.26 sequence depth, 99.85% and 98.68% of target region

depth (Table 1).

Estimation of Total cff-DNA Concentration and Zygosity
Determination

Genotypes of parental genomes were analyzed by SOAPsnp

[12], and only parental-specific homozygous loci in the form of

RAA=BB were selected. Then the sequence reads from those loci

were used to estimate the total cff-DNA concentration. We

obtained 1,209, 1,057, 1,090 and 986, 1,150 and 1,241 parental-

specific homozygous loci from Sample1-6 respectively. And the

total cff-DNA concentrations of Sample1-6 were estimated at

27.04%, 22.12%, 23.35%, 9.36%, 18.83% and 25.16%, respec-

tively.

According to our mathematical model, paternal-only heterozy-

gous loci in the form of RAA=AB were used to calculate L values.

708 and 603 loci were available for Sample1 and Sample2 to

obtain 1.891 and 1.554 of L values, which were both above their

corresponding DZ cut-offs (.1.162 and .1.172 for DZ, while

,0.938 and ,0.928 for MZ), indicating both samples were DZ

(Figure 1a). L values of Sample3 and Sample4 were calculated as

0.639 and 0.757 through 564 and 610 available loci respectively,

Table 1. Data production of 6 clinical samples.

Sample Production(Gbp) Coverage(%)* Depth(6)*

Father Sample1 0.41 98.18 219.63

Mother Sample1 0.37 96.01 192.54

Father Sample2 0.46 98.22 228.93

Mother Sample2 0.51 96.29 268.76

Plasma Sample1 4.43 95.81 930.87

Plasma Sample2 11.47 97.51 1363.25

Father Sample3 0.33 95.06 130.30

Mother Sample3 0.38 95.37 146.03

Father Sample4 0.10 92.59 51.47

Mother Sample4 0.37 94.18 185.33

Plasma Sample3 3.16 95.36 519.34

Plasma Sample4 2.55 96.88 446.89

Father Sample5 2.05 99.64 97.36

Mother Sample5 1.51 98.12 76.80

Father Sample6 2.25 99.60 106.58

Mother Sample6 1.26 97.98 64.27

Plasma Sample5 16.26 99.85 492.30

Plasma Sample6 15.59 98.68 271.20

*‘‘Coverage (%)’’ and ‘‘Depth (6)’’ mean the coverage and average sequencing
depth in the target region.
doi:10.1371/journal.pone.0065050.t001
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which were both lower than the MZ respective cut-offs (,0.921

and ,0.799 for MZ, while .1.179 and .1.301 for

DZ)(Figure 1b). Additionally, by using 554 and 558 available

loci of Sample5 and Sample6 respectively, L of this two samples

were 0.763 and 0.784, both below their MZ cut-offs (,0.903 and

,0.918 for MZ, while .1.197 and .1.182 for DZ)

(Figure 1c).The results for these six samples showed the zygosity

of twin pregnancies could be determined using our bioinformatic

method through maternal plasma target region sequencing.

Estimation of Sensitivity and Specificity in Silico
To further understand the performance of our method, we

simulated sequence data with different gradients of cff-DNA

concentration and sequence depth (Materials and Methods).

Overall, the sensitivity, which was defined as MZ accuracy,

increased with the enhancement of cff-DNA concentration and

sequence depth. It could achieve 99.90% on the condition of

10.00% total cff-DNA concentration and 3006 target region

sequence depth (Figure 2a). Also, the specificity (DZ accuracy) of

15.00% total cff-DNA concentration and 5006 target region

depth was as high as 97.00% (Figure 2b). It was notable that the

results from in silico showed a relatively high accuracy to determine

MZ twins than DZ twins, which might be partially related to the

systematic loss of paternal-specific alleles in the maternal plasma

sequence data. Meanwhile, we also found that the total cff-DNA

concentration plays a more decisive effect than the sequence depth

in the zygosity determination. (Table S2).

Discussion

In this study, we developed a practical method to noninvasively

determine the zygosity of twin pregnancies by using target region

sequencing for maternal plasma. The method consists of

determination of empirical dynamic thresholds, cff-DNA concen-

tration estimation and likelihood ratios calculation. The zygosity

types of 4 clinical twin pregnancies samples were determined

successfully as well as those of 2 singletons. The simulation data

also showed that more than 99.90% of the MZ simulated samples

with total cff-DNA concentration as much as 10.00% were

correctly determined by using about 2.00 Gbp sequence data.

Moreover, the sensitivity was improved apparently with the

increment of cff-DNA concentration.

Figure 1. Zygosity determination results of 6 clinical samples. In Figure 1a, the two points were both above the corresponding DZ cut-off,
indicating both samples were correctly determined as DZ. In Figure 1b and 1c, the four points were all under the corresponding MZ cut-off, meaning
simulated and real MZ twin pregnancies were all correctly determined.
doi:10.1371/journal.pone.0065050.g001

Figure 2. The estimated sensitivity and specificity. Figure 2a and 2b indicated the specificity (DZ) and sensitivity (MZ) with different total cff-
DNA concentration and sequence depth respectively. The detailed grey level of each square represented the related accuracy according to the
legend on the right, ranging from 0% to 100%.
doi:10.1371/journal.pone.0065050.g002
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Parental genotypes were necessary information in our current

method. Since the judgments of fetal genotypes mostly relied on

the prior probabilities ensured by parental genotypes in the

Bayesian model, parental genomes helped filtering useless and

disruptive SNP loci, e.g. loci in the form of =AARAA and

=ABRAB. Therefore we could use only the paternal-specific

heterozygous loci (=ABRAA) to calculate the likelihood ratio and

estimate the percentage cff-DNA through parental-specific homo-

zygous loci (=AARBB).

Comparing with conventional approaches, this sequencing-

based approach has several advantages. Firstly, cff-DNA detection

has been reported to as early as four weeks [13], which has much

less limitation of sampling time restriction than ultrasound

scanning. Secondly, maternal blood sampling avoids the risk of

miscarriage carried by invasive procedure. Lastly, we used an

empirical dynamic threshold for DZ and MZ twin pregnancies to

improve the accuracy of zygosity detection, which could signifi-

cantly minimize the fluctuation of cff-DNA between different loci.

However, our bioinformatic model still needs to be improved in

the following studies. Firstly, we constructed this model on the

hypothesis of the same contribution to cff-DNA concentration in

twin pregnancies, but previous studies have reported a variable

combination of cff-DNA concentration for each fetus. False signal

might be obtained in MZ detection if there is a significant bias in

the distribution of cff-DNA concentration. Referring to some

clinical information such as crown-rump length (CRL), the

fractional cff-DNA concentration of MZ twins may be prelimi-

narily ensured.

Secondly, this high throughput sequencing approach could be

only used to distinguish MZ and DZ twin pregnancies. The

detailed physiological structure of the placenta for MZ twins, such

as monochorionic-monoamniotic (MCMA) twins and monocho-

rionic-diamniotic (MCDA) twins, could be determined by only the

combination of ultrasound scanning with sequencing test.

Besides ultrasound scanning and invasive prenatal test, few

prenatal detection approaches could be provided for twin

pregnancies due to limited accuracy. Here we demonstrated a

sequencing-based noninvasively approach to detect zygosity,

which could give clues for twins specific diseases, such as TTTS,

as well as gender determination and sex-linked monogenetic

diseases [14,15]. Our study also encourages the application of

sequencing technology using maternal plasma to meet rigorous

clinical needs, especially on twin pregnancies.

Materials and Methods

Sample Recruitment and Library Construction
Six pregnant women, including four of which with twin

pregnancies and the rest two with singleton pregnancies, were

recruited for this study. Written informed content was obtained

from each participant and approval was obtained from the

Institutional Review Board of BGI-Shenzhen. 5 ml maternal

blood was drawn into EDTA-anticoagulated tubes, and plasma

samples were isolated using two-steps centrifugation. Cell-free

DNA was extracted from 600 ml maternal plasma following the

instruction of QIAamp DNeasy Blood & Tissue Kit (Qiagen).

DNA libraries were prepared in accordance with previous study

[16,17]. We also collected 5 ml paternal peripheral blood to

construct the model. Genomic DNA (gDNA) for whole blood were

extracted and used to construct pre-capture libraries with 200 bp

insert size.

Targets Regions Capture and Sequencing
We designed two versions of probes, both covering 4,524 SNPs

from 22 autosome chromosomes (Table S3). The SNPs were

selected from dbSNP build 131 with at least of 0.3 of MAF. DNA

libraries were hybridized with the capture probes at 65uC for 22–

24 hours, in accordance with the manufacturer’s instructions.

After hybridization, the captured targets were selected by pulling

down the biotinylated probe/target hybrids with M-280 strepta-

vidin Dynabeads (Invitrogen). Then, the targeted-DNA libraries

were enriched by PCR amplification. And the PCR products were

purified by QIAquick PCR Purification Kit. These libraries were

subjected to target enrichment and then precede paired-end (PE)

90 cycles sequencing on Illumina HiSeq2000 Analyzers (following

the manufacturer’s standard cluster generation and sequencing

protocols). The PE reads were mapped to the human reference

genome (Hg19, Build37.3) using SOAP2 [18] with maximally five

mismatches. PCR duplication and non-unique alignments reads

were also removed before following analysis. The genotypes of

4,524 SNPs for parents and fetus were detected using SOAPsnp.

All the raw sequencing data had submitted to NCBI SRA (http://

www.ncbi.nlm.nih.gov/sra) and the Submission ID is SRA071774.

Bioinformatic Model for Zygosity Determination
To noninvasively determine zygosity using maternal plasma

sequencing, we constructed a comprehensive bioinformatic model

based on paternal-specific heterozygous SNP loci. Those loci

provide applicable information to determine the zygosity in the

massive background of the maternal homozygotes on these SNPs.

We defined Li as a likelihood ratio to measure the tendency of

zygosity of a single locus. Through the simulation of 10,000 loci

with the same fetal genotype (Type I) and 10,000 with different

fetal genotypes (Type II), we discovered the natural logarithm of Li

(ln Li) of most loci of Type I was lower than 0 while ln Li of most

loci of Type II was higher than 0 (Figure S1). As most loci could

increase the signal-noise ratio in our zygosity determination, we

used the cumulative difference L brought by all Li to enrich the

signal and regarded it as the effective evidence to determine the

zygosity.

We firstly calculated cff-DNA concentration based on parental-

specific homozygous SNP loci. For each available biparental

homozygous SNP locus (=AARBB), where the fetal genotypes of

both twins are definite to be AB, we calculated the ratio

fi~
2di(B)

di(A)zdi(B)
as the percentage cff-DNA from this locus, where

d meant the depth of the allele A or B. Then the percentage cff-

DNA was estimated by calculating the average value of all the

ratios. The total calculating formula is:

f ~
1

N

XN

i~1

fi~
1

N

XN

i~1

2di(B)

di(A)zdi(B)

As for the detailed calculation, for each available paternal-

specific heterozygous SNP locus (=ABRAA), the conditional

probability of DZ twins was calculated as:

Pri(DZDBi)~
X

F0,F1

Prj(GF0,F1
):Prj(Bi DGF0,F1

)
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Conditional probability of MZ twins was calculated as:

Pri(MZDBi)~
X

F

Prj(GF ):Prj(Bi DGF )

In the equation, F0 and F1 stood for DZ fetuses and F for MZ

fetuses; GF0, F1 and GF mean genotype for fetuses; Bi mean the

observation of base distribution at a typical locus in maternal

plasma; j stood for the number of fetal genotypes.

Theoretically, genotypes in paternal-specific heterozygous loci

should be the same in MZ twins, while probably different in DZ

twins. Here we used Li as an odd ratio between the conditional

probability of DZ and MZ twins pregnancies to quantify the

tendency of zygosity:

Li~
Pri(DZDBi)

Pri(MZDBi)
~

P
F0,F1

Prj(GF0,F1
):Prj(Bi DGF0,F1

)

P
F

Prj(GF ):Prj(Bi DGF )

Li value should be larger than 1 if there was a DZ twins

pregnancies. We employed L as the numerically cumulative

difference of Li to describe the global tendency of zygosity. The

total likelihood ratio L value would be calculated by at least

hundreds of paternal-specific heterozygous loci as a geometrical

mean:

L~

ffiffiffiffiffiffiffiffiffiffiffiffi
P
N

i~1
Li

N

r
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P
N

i~1

P
F0,F1

Prj(GF0,F1
):Prj(Bi DGF0,F1

)

P
F

Prj(GF ):Prj(Bi DGF )

N

vuuuut

Considering the fluctuation of sequencing depths and cff-DNA

concentration, we set a dynamic threshold for L values to

determine zygosity. Of 4,524 autosomal SNP loci, we randomly

generated maternal plasma sequence results of 500 paternal-

specific heterozygous loci for DZ and MZ twin pregnancies to

calculate the likelihood ratio L value. In order to obtain a series of

real cut-offs (LR) as the boundaries of .95% CI, we simulated six

different sequence depths from 3006 with 2006 of gradient

increasing and five different cff-DNA concentrations from 10.00%

with 5.00% of gradient increasing, for 500 DZ and 500 MZ

samples.

Hereinto we used least squared method (LSM) to get two

approximate mathematical expressions of DZ and MZ dynamic

cut-offs respectively by using LR. It was expressed as:

MZ[(0,1{
5

f lg D
�,DZ[½1:1z

5

f lg D
,z?)

where f means cff-DNA concentration and D represents sequence

depth. The reliability of the fitting expressions was validated by

calculating the multiple correlation coefficients R2. The results for

DZ and MZ expressions were 0.98 and 0.95 respectively,

indicating the reasonability of the expressions. For better

understanding of our methodology, we illustrated a three-

dimensional figure through our fitting expressions of L to exhibit

the broader feasible region with the enhancement of percentage

cff-DNA and sequence depth (Figure S2). The figure showed that

DZ twins’ feasible region was upon the upper surface, while MZ

twins’ feasible region was below the inferior surface. Lastly,

additional 1,000 DZ and 1,000 MZ simulated samples were

generated to estimate the sensitivity and specificity for different cff-

DNA concentration and sequence depth in silico.

Supporting Information

Figure S1 Li distribution of two types of loci. 10,000 loci

of Type I, which were represented by using red pillars, meant

those with fetal genotypes in concordance. While 10,000 loci of

Type II, which were represented by using green pillars, meant

those without fetal genotypes in concordance.

(TIF)

Figure S2 The three-dimensional feasible region of
zygosity determination. The zone beyond the surface above

meant the feasible region for DZ twins, while the zone under the

surface below meant the feasible region for MZ twins.

(TIF)

Table S1 Real cut-offs with different total cff-DNA
concentration and sequence depth.

(DOC)

Table S2 Evaluation results of sensitivity and specificity
in silico.

(DOC)

Table S3 Information about the 4524 autosomal SNP
loci.

(XLS)
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